THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Как правило, элементы программируемого обучения входят в состав автоматизированных обучающих систем (АОС). Эти системы представляют собой комплексы научно-методической, учебной и организационной поддержки процесса обучения, проводимого на базе компьютерных или, как их также называют, информационных технологий. С позиций современной дидактики введение информационной среды и программного обеспечения внесло огромное количество новых возможностей во все области процесса обучения. Компьютерные технологии предстааляют собой принципиально новые средства обучения. За счет своего быстродействия и больших резервов памяти они позволяют реализовы-вать различные варианты сред для программированного и проблемного обучения, строить различные варианты диалоговых режимов обучения, когда так или иначе ответ учащегося реально влияет на ход дальнейшего обучения.

Вследствие этого современный педагог с неизбежностью должен осваивать новые образовательные подходы, опирающиеся на средства и методы индивидуального компьютерного обучения. В общем случае педагог получает доступ к компьютерным средствам, информационной среде и программным продуктам, предназначенным для обеспечения преподавательской деятельности. Все эти средства образуют комплексы автоматизированных обучающих систем.

В рамках автоматизированных обучающих систем на сегодняшний день решается ряд задач обучения. В первую группу можно отнести задачи проверки уровня знаний, умений и навыков учащихся до и после обучения, их индивидуальных способностей, склонностей и мотиваций. Для таких проверок обычно используют соответствующие системы (батареи) психологических тестов и экзаменационных вопросов. К этой же группе относятся задачи проверки показателей работоспособности учащихся, что осуществляется путем регистрации таких психофизиологических показателей, как скорость реакции, уровень внимания и т.д.

Вторая группа задач связана с регистрацией и статистическим анализом показателей усвоения учебного материала: заведение индивидуальных разделов для каждого учащегося, определение времени решения задач, определение общего числа ошибок, классификация типов индивидуальных ошибок и т. д. К этой же группе логично отнести решение задач управления учебной деятельностью. Например, задач по изменению темпа предъявления учебного материала или порядка предъявления учащемуся новых блоков учебной информации в зависимости от времени решения, типа и числа ошибок. Таким образом, эта группа задач направлена на поддержку и реализацию основных элементов программированного обучения.

Третья группа задач АОС связана с решением задач подготовки и предъявления учебного материала, адаптации материала по уровням сложности, подготовки динамических иллюстраций, контрольных заданий, лабораторных работ, самостоятельных работ учащихся. В качестве примера уровня таких занятий можно указать на возможности использования различных инструментов информационных технологий. Другими словами, использования программных продуктов, дающих возможность формирования различных сложных лабораторных или других практических работ. Например, таких, как сборка "виртуального" осциллографа с последующей демонстрацией его возможностей по регистрации, усилению или синхронизации различных сигналов. Аналогичные примеры из области химии могут касаться моделирования взаимодействия сложных молекул, поведения растворов или газов при изменении условий эксперимента.

Техническое обеспечение автоматизированных обучаюшихси-стем основано на локальных компьютерных сетях, включающих автоматизированные рабочие места (АРМ) учащихся, преподавателя и линии связи между ними (рис. 10.1). Рабочее место учащегося, кроме монитора (дисплея) и клавиатуры, может содержать принтер, такие элементы мультимедиа, какдинамики, синтезаторы звуков, текстовые и графические редакторы. Цель всех этих тех-нических и программных средств состоит в обеспечении учащихся средствами решения, справочным материалом и средствами регистрации ответов. Оснащение центрального рабочего места преподавателя включает в себя существенные дополнительные технические и программные элементы, позволяющие регистрировать ин

Рис. 10.1. Общая схема замкнутого контура управления в системе "педагог - учащийся". Программное обеспечение автоматизированных рабочих мест преподавателя и учащегося (АРМП и АРМУ) дает возможность реализации различных вариантов автоматизированных обучающих систем, в том числе систем программированного обучения, основанных на учете индивидуальных трудностей обучения и выдаче персональных заданий

дивидуальные ответы учащихся, вести статистику типов ошибок, выдавать индивидуальные задания и оказывать корректирующую помощь. Расширенные варианты автоматизированных обучающих систем могут иметь выход в пространство Интернета, доступ к базам данных по различным предметным областям, электронную почту.

Компьютерные обучающие программы (КОПР) - это электронные гипертекстовые учебники с диалоговыми функциями и элементами мультимедиа, которые предназначены для самостоятельной работы студентов с учебным материалом; эффективны при дистанционной технологии обучения.

КОПР дополняют традиционные учебные материалы, используя возможности современных компьютерных технологий.

Они включают в себя:

теоретический материал

разбор решения типовых задач и поясняющие примеры

графические и анимационные материалы

тесты для самоконтроля и контроля знаний

необходимые дополнительные и сервисные средства.

Можно выделить наиболее распространенные типы компьютерных средств :

Презентации - наиболее распространенный вид представления демонстрационных материалов (бла-бла)

Электронные энциклопедии объединяют функции демонстрационных и справочных материалов и являются электронным аналогом обычных справочно-информационных изданий, таких, как энциклопедии, словари, справочники. Для создания таких энциклопедий обычно используются гипертекстовые системы и языки гипертекстовой разметки, например HTML.

Обладают рядом дополнительных возможностей:

Обычно поддерживают удобную систему поиска по ключевым словам и понятиям;

Имеют удобную систему навигации на основе гиперссылок;

Могут включать в себя аудио- и видеофрагменты.

Дидактические материалы (сборники задач, диктантов, упражнений, примеров, рефератов и сочинений), представленные в электронном виде. Также к дидактическим материалам можно отнести программы-тренажеры, например, для решения математических задач или для заучивания иностранных слов.

Программы системы контроля знаний , такие, как опросники и тесты. Позволяют быстро, удобно, беспристрастно и автоматизировано обработать полученные результаты.

Электронные учебники и электронные учебные курсы объединяют в единый программный комплекс все или несколько вышеописанных типов обучающих программ. Например, обучаемому сначала предлагается просмотреть обучающий курс (презентация); на следующем этапе он может поставить виртуальный эксперимент на основе знаний, полученных при просмотре обучающего курса; а в завершение он должен ответить на набор вопросов.

Обучающие игры и развивающие программы в основном ориентированы на дошкольников и младших школьников. К этому типу относятся интерактивные программы с игровым сценарием. Выполняя разнообразные задания во время игры, дети развивают тонкие двигательные навыки, пространственное воображение, память и другие умения.

В результате работы с программным обеспечением различного типа выделим следующие принципы выбора программного продукта для использования на уроке:



1) Программа должна быть понятна с первого знакомства как преподавателям, так и ученикам. Управление программой должно быть максимально простым.

2) Преподаватель должен иметь возможность компоновать материал по своему усмотрению и при подготовке к уроку заниматься творчеством.

3) Программа должна позволять использовать информацию в любой форме представления (текст, таблицы, диаграммы, слайды, видео- и аудиофрагменты и т.д.).

Учебно-методический комплекс – система нормативной и учебно-методической документации, средств обучения и контроля, необходимых и достаточных для качественной организации основных и дополнительных образовательных программ, согласно учебного плана. УМК учебной дисциплины является одним из элементов организации образовательной деятельности по очной, заочной и очно-заочной форм обучения. УМК должен разрабатываться для студентов по всем учебным дисциплинам с учетом необходимости повышения качества усвоения содержания учебного материала на уровне требований ГОС ВПО.

Основная цель создания УМК - предоставить студенту полный комплект учебно-методических материалов для самостоятельного изучения дисциплины. При этом, помимо непосредственного обучения студентов, задачами преподавателя являются: оказание консультационных услуг, текущая и итоговая оценка знаний, мотивация к самостоятельной работе.

1

Проникновение информационных технологий в область обучения приводит к расширению понятийной базы, как за счет образования новых понятий, так и за счет употребления старых понятий в новом смысловом значении. Необходимость изменения смыслового содержания некоторых понятий кибернетики связано, прежде всего, с тем, что задачи управления обучением нельзя рассматривать в отрыве от состояния обучаемого. С этой точки зрения выстраиваемое в обучающих системах информационное поле и множество участников учебного процесса образуют единое целое - «самосогласованную систему». Это понятие заимствовано нами из физики, как и многие другие понятия, уже нашедшие применение в описании автоматизированных обучающих систем, не случайно. На наш взгляд между задачами автоматизации обучения и методами описания, например, квантовой системы много общего. При этом содержание понятия «кванта информации» имеет гораздо больше общего с понятием энергетического кванта, чем это принято считать.

С точки зрения информационных технологий задачу обучения можно рассматривать как перевод системы в новое качественное состояние путем конечного числа количественных преобразований.

При разработке автоматизированных обучающих систем обрабатываемая компьютером и предлагаемая пользователю информация должна оцениваться, прежде всего, с точки зрения восприятия этой информации сознанием как информации полезной для формирования личности. Иначе говоря, любая обучающая система (не обязательно автоматизированная) представляет собой семантическую информационную систему (СИС) . В связи с этим целесообразным, на наш взгляд, является выделение таких кибернетических элементов, которые принято называть информационными потоками , уточнив, однако, это понятия в применении к СИС.

Под семантическим информационным потоком в обучении (СИПО) мы будем понимать такую последовательность изменений наших знаний, которая только во всей своей совокупности воспринимается сознанием как определенный шаг в развитии личности, т. е. обеспечивает переход личности в новое качество.

На вход обучающей системы поступает информация, организованная по принципу «элементарного многообразия»: множество бит информации равномерно обрабатывается в течение времени. Биты информации, задаваемые на числовой оси x и такты обработки прерываний, задаваемые генератором можно рассматривать как координаты некоторого «пространственно-временного» многообразия {x, t} - однородного пространства экранных событий.

Обработка информации с целью обучения - это нарушение однородности многообразия, превращение его в некое, возможно метрическое, пространство. Чтобы понять, какие именно изменения происходят в непрерывном потоке информации в процессе ее подготовки к восприятию с экрана компьютерного монитора, рассмотрим основные операции над информационным пространством, диктуемые задачами обучения.

1. Разметка информационного пространства - разделение информационного пространства на СИПО.

2. Форматирование СИПО - задание единичного элемента, единицы измерения информационного потока по отношению к процессу обучения.

3. Квантование СИПО. Под квантованием СИПО мы понимаем его разложение на некоторые базисные составляющие, отвечающие заранее заданным свойствам, зависящим от особенностей компьютерного представления информации, задач обучения, особенностей восприятия. При этом саму процедуру квантования целесообразно разложить на две составляющие:

  1. последовательное квантование - разбиение на части "длины" информационного потока (long-квантование);
  2. параллельное квантование - расслоение отдельных long-квантов на слои - flaky-кванты по пути углубления представления об элементе информационного потока.

4. Распределение СИПО. В процессе обучения потребность в различных квантах различна, и это обстоятельство заставляет решать задачу распределения информационного потока по области компьютерного представления знаний (строки, фреймы, окна).

5. Конкатенация (соединение) СИПО. Содержание термина аналогично его смыслу в программировании. Речь идет как о соединении отдельных слоев long-квантов одного и того же СИПО, так и о соединении по некоторым квантам (как long, так и flaky) различных СИПО. Как правило, конкатенация внутри одного и того же СИПО обусловлена использованием различными long-квантами одних и тех же flaky-квантов.

6. Шлюзование информационного потока - приостановка потока новой информации для корректировки базовых знаний, необходимых для понимания дальнейших рассуждений.

7. Слияние информационных потоков - образование нового информационного потока на основании результатов, полученных в нескольких независимых СИПО.

Задачу квантования СИПО полезно уточнить, исходя из принятого в физике понимания кванта энергии. Под квантом энергии в физике (квантом электромагнитного поля) понимается энергетическая порция, которая излучается, перемещается в пространстве и поглощается только целиком, как единое целое - корпускула. При этом свойство поглощения кванта зависит от соотношения между энергией кванта и возможностями поглощающей системы, т.е. энергия кванта, поглощаемого системой, есть свойство не только кванта, но и поглощающей системы. В существующей трактовке кванта информации это основное свойство энергетического кванта отсутствует вообще. Но именно это свойство позволяет говорить о квантовой системе. Обучаемые, помещенные в информационное пространство, представляют собой многоуровневую систему, требующую для своего качественного изменения усвоение различного количества информации, т.е. квантов различной информационной энергии. С этой точки зрения экранная страница текста, формула, рисунок не могут рассматриваться как инвариантные понятия квантов информационного потока. В соответствии с понятием семантической информации квантом информации следует считать только такую совокупность данных, которая обязательно изменяет состояние наших знаний, а с точки зрения обучения изменить состояние знаний может только усваиваемая порция информации. Усвоена же порция информации может быть только тогда, когда все данные из этой порции понятны обучаемому. Таким образом, даже при одинаковой предыстории обучения для одного может быть понятна формула без дополнительных пояснений, для другого - с дополнительными пояснениями, для третьего необходимо разъяснение терминологии, используемой в пояснении. Такое понимание кванта информации значительно сближает его с понятием кванта энергии. Очевидно, что при определенных размерах информационного кванта не имеет смысла вообще говорить о возможности его поглощения, т.е. усвоения.

Следует, однако, отметить, что человеку как элементу учебного процесса свойственно самому разбивать информацию на кванты с целью ее полного усвоения. При этом ему приходится решать дополнительные задачи сортировки имеющейся информации и поиска недостающей информации. Решение именно этих задач и следует возлагать на автоматизированные обучающие системы. Рассмотренное выше уточнение семантических операций над семантической информацией, исходя из задач обучения, позволяет на наш взгляд лучше организовать процесс подготовки исходного материала для его использования в автоматизированных обучающих системах.

Литература

  1. Горовенко Л.А. Построение информационно-образовательной среды с элементами искусственного интеллекта: Дис.... канд. техн. наук. Краснодар, 2002. - 167 с.
  2. Соломатин Н.М. Информационные семантические системы. - М.: Высшая школа, 1989. - 127с.

Библиографическая ссылка

Рыкова Е.В., Рыков В.Т. КОМПЬЮТЕРНЫЕ ОБУЧАЮЩИЕ СИСТЕМЫ И ИНФОРМАЦИОННЫЕ ПОТОКИ // Успехи современного естествознания. – 2004. – № 3. – С. 87-88;
URL: http://natural-sciences.ru/ru/article/view?id=12424 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

с учетом истории развития компьютерного обучения различают два вида компьютерных обучающих систем: традиционные и интеллектуальные. Основные особенности интеллектуальных обучающих систем (ИОС): управление учебной деятельностью с учетом всех ее особенностей на всех этапах решения учебной задачи, начиная от постановки и поиска принципа решения и заканчивая оценкой оптимальности решения; обеспечение диалогового взаимодействия, как правило, на языке, близком к естественному. В ИОС индивидуализированное обучение осуществляется на основе динамической модели учащегося. Благодаря тому, что компьютер может объяснить свои действия, а учащийся получает возможность увидеть результаты этих действий, появляются новые возможности в осуществлении учащимися рефлексии своей деятельности. Допускается постановка учащимися учебных задач и управление процессом их решения. ИОС позволяют обеспечить распределение управляющих функций между компьютером и учащимся, передавая последнему, по мере формирования учебной деятельности, новые обучающие функции и обеспечивая тем самым оптимальный переход от учения к самообучению. В ИОС, в отличие от традиционных систем компьютерного обучения, решения заранее не программируются, а в соответствии с заложенной в нее системой правил организуют управление учебной деятельностью как эвристический процесс. Наряду с ИОС, в состав которых входят экспертные системы, широкое распространение получили так называемые пассивные ИОС (компьютерные учебные среды, микромиры), построенные по принципу «учение без обучения» (ЛОГО). Система компьютерного обучения включает техническое (компьютер), программное и учебное обеспечение. Процесс обучения может поддерживаться многими программами. Комплекс программ, выполняющих одну или несколько взаимосвязанных функций в процессе обучения, называют модулем. ИОС содержат, как правило, следующие модули: эксперт, педагогический модуль (обеспечивающий управление учением), модель учащегося, пользовательский интерфейс.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама