THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Планшетные сканеры:

как они устроены, чем отличаются и как расшифровать характеристики

Выбирающий сканер человек встречает такое количество числовых характеристик, названий «патентованных и только у нас» технологий и просто загадочных фраз, что несложно растеряться. Тестирование в компьютерной прессе обычно проводится по случайно выбранным критериям, при этом важные для конкретного человека возможности остаются за кадром. Некоторые продавцы сканеров приводят убойные для непосвящённого человека аргументы вроде «у сканера А нет разрывов в полутонах, а сканер Б имеет несколько завышенное механическое разрешение». Как «перевести» их высказывания и вообще есть ли в них смысл, за какие функции именно в Вашем случае стоит платить, а какие останутся «про запас» — вот о чём эта статья. Ниже мы попытаемся рассмотреть конструктивные принципы, применённые в планшетных сканерах, с точки зрения электроники и оптики, и оценим значение основных характеристик сканеров, как выражаемых в цифрах и приводимых в рекламе и руководствах, так и менее очевидных, но не менее важных. Ручные и протяжные (листовые) сканеры мы отдельно рассматривать не будем ввиду общности используемых технологий, одинакового значения численных характеристик и ограниченности их применения для работы с полноцветным изображением. Все приводимые сведения по умолчанию относятся только к ценовой категории «до 10000 у.е.».

Современный сканер функционально состоит из двух частей: собственно сканирующего механизма (engine) и программной части (TWAIN-модуль, система управления цветом и прочее). В процессе покупки часто забывают о том, что без собственного драйвера сканер работать не сможет, так как не является стандартным для Windows устройством. Надёжность же работы и функциональные возможности (точнее, их отсутствие) TWAIN-модулей особо дешёвых сканеров сильно напоминают драйвера «безродных» видеокарт, с той разницей, что для сканеров нет «универсальных» драйверов от производителя чипа или из комплекта поставки Windows. Если Вы работаете под WindowsNT, будьте внимательны вдвойне!

Механизм:

Сканирующие механизмы планшетных сканеров выпускает весьма ограниченный круг производителей, которые поставляют их по OEM-соглашениям другим компаниям. Те комплектуют их своим набором программного обеспечения и продают под собственной торговой маркой. «Добавленное» программное обеспечение может быть действительно очень хорошим, но нельзя не упомянуть о некоторых «подводных камнях» при покупке такого сканера «из третьих рук».

Во-первых, цена обычно выше, чем у «исходной» модели, хотя механизм остаётся тем же самым.

Во-вторых, неизбежная потеря времени на взаимодействие производителя механизма и компании, продающей сканер под своей маркой, приводит к некоторому моральному устареванию модели к моменту выпуска в продажу, иногда довольно значительному. Так, в некоторых моделях сканеров очень известных фирм используются механизмы «образца» 1993 года!

В-третьих, не всегда есть совместимость «переименованной» модели с новыми версиями драйверов от производителя механизма, в таком случае новые драйвера будут доступны только после их «доработки» продавцом, в худшем же случае, если продавец перестал торговать сканерами под своей маркой, никогда.

Планшетные сканеры, особенно предназначенные для чего-то кроме подарка или использования в качестве игрушки, при внешней простоте являются весьма интересными и довольно сложными опто-электронно-механическими устройствами. Однако конструкция их устоялась, производство хорошо налажено и технологически не является чем-то запредельным, так что обычно планшетные сканеры в ценовом диапазоне до 10000 долларов (включая такие известные имена, как AGFA, Linotype-Hell и UMAX) производятся на Тайване.

Для понимания значения характеристик нужно представлять себе конструкцию типового планшетного сканера (конструкция дорогих моделей немного отличается).

Оригинал располагается на прозрачном неподвижном стекле, вдоль которого передвигается сканирующая каретка с источником света (если сканируется прозрачный оригинал, используется так называемый слайд-модуль — крышка, в которой параллельно сканирующей каретке сканера перемещается вторая лампа).

Оптическая система сканера (состоит из обьектива и зеркал или призмы) проецирует световой поток от сканируемого оригинала на приёмный элемент, осуществляющий разделение информации о цветах — три параллельных линейки из равного числа отдельных светочувствительных элементов, принимающие информацию о содержании «своих» цветов. В трёхпроходных сканерах используются лампы разных цветов или же меняющиеся светофильтры на лампе или CCD-матрице. Приёмный элемент преобразует уровень освещенности в уровень напряжения (все ещё аналоговую информацию). Далее, после возможной коррекции и обработки, аналоговый сигнал поступает на аналого-цифровой преобразователь (АЦП). С АЦП информация выходит уже в «знакомом» компьютеру двоичном виде и, после обработки в контроллере сканера через интерфейс с компьютером поступает в драйвер сканера — обычно это так называемый TWAIN-модуль, с которым уже взаимодействуют прикладные программы.

Источник света:

В старых разработках —обычная флуоресцентная лампа (родственна обычным лампам дневного света). Недостаток — слабая стабильность характеристик освещения и ограниченный срок службы. В современных моделях — лампа с холодным катодом, имеющая лучшие параметры и значительно больший срок службы. Как лампа влияет на результат сканирования? Достаточно очевидно — при изменении характеристик источника освещения оригинала изменяется падающий на принимающую матрицу световой поток, несущий информацию о сканируемом оригинале. Если свойства лампы за 2-3 месяца работы изменяются «до неузнаваемости» — говорить о правильной цветопередаче сканера уже не приходится.

Вообще, характеристики светового потока меняются даже при прогреве сканера. В этой связи несколько настораживает конструкция текущих моделей Epson — единственные из известных марок сканеры с тремя раздельными лампами разных цветов, ведь каждая лампа может «плыть» по-своему.

Качество лампы оценить сложно. Убедитесь, по крайней мере, что используется лампа с холодным катодом (если это так, то обязательно отражено в описании). Ориентированные на профессиональную работу с цветом сканеры содержат помимо встроенной процедуры самокалибрации по интенсивности светового потока от лампы еще и схемы поддержания стабильности потока при изменении температуры.

Кстати, косвенным признаком пригодности к «полноцветной» работе может служить время первичного прогрева лампы после того, как лампа была автоматически погашена при неиспользовании сканера в течении некоторого времени (кстати, обычно время прогрева и время ожидания до погашения лампы можно изменить, но где-то внутри файлов настроек).

Оптическая система:

Световой поток от оригинала проецируется на матрицу CCD (прибор с зарядовой связью), которая преобразует его в электрический сигнал. Обычно используется один фокусирующий обьектив (или линза), который проецирует полную ширину области сканирования на полную ширину матрицы CCD. Требования к качеству оптики для такой задачи весьма высоки, особенно сложно обеспечить приемлемое качество проецирования краёв рабочей области для цветных оригиналов. Оценить качество фокусировки и разрешающую способность оптики легко можно визуально при сканировании специальной тестовой мишени или защитных участков банкноты.

В наиболее мощных моделях планшетных сканеров встречаются сменные объективы: при работе в обычном режиме оптика работает аналогично однолинзовым механизмам, при переключении на второй, «усиленный» режим используется другой объектив, который проецирует на полную ширину CCD-матрицы только часть ширины рабочего стола сканера. Таким образом, на постоянное число приёмных ячеек CCD-матрицы проецируется участок меньшей ширины и соответственно возрастает оптическое разрешение. Обычно в документации указано число ячеек CCD-матрицы. Новейшие матрицы 42-битных сканеров имеют 10600 ячеек (хотя в однопроходных сканерах матрица имеет три параллельных линейки приёмных ячеек — по одной на цвет, указывается число элементов в одной). Поделив число ячеек на ширину поля сканирования, получим оптическое разрешение. Заметим, что некоторые профессиональные плоскостные сканеры имеют больше двух (до 5) переключаемых объективов, но это уже категория «выше 10000».

Для сканеров, эксплуатируемых на территории бывшего СССР, большое практическое значение имеет защищённость их зеркал, оптической системы и CCD-матрицы от пыли и насекомых. Даже мелкие пылинки и ворсинки непосредственно на матрице или объективе приводят к заметным дефектам.

Разрешение: оптическое, механическое, физическое и разное.

Оптическое : количество элементов в линии матрицы, поделённое на ширину рабочей области. Определяется матрицей и шириной рабочей зоны, меньшая из всех приводимых цифр разрешения. Но может и не приводиться вовсе! Первый кандидат на использование в качестве примера: в характеристиках на HP ScanJet 5100 «Resolution, Optical: 600dpi Hardware Super Sampling». Про модель ScanJet 6100, которая где-то в два раза дороже, написано просто «Resolution, Optical: 600dpi».

Механическое : количество раз «считывания» информации CCD-матрицей, поделённое на длину пути, пройденного за это время сканирующей кареткой. Иногда его тоже называют оптическим («оптическое разрешение 300×600»), но на самом деле это не так (оптическое будет 300, а 600 — это тоже реальное разрешение, но механизма, а не оптики). Как правило, механическое разрешение задаётся изготовителем в 2 раза больше оптического (иногда равным ему или в 4 раза большим), при этом, поскольку CCD-матрица не может сканировать с разрешением выше оптического, а сканируемый квадрат должен остаться квадратом, недостающие «по ширине» точки рассчитываются (интерполируются). Интерполяция же не только не даёт видимого повышения качества при сканировании полноцветных оригиналов, но и может ухудшить чёткость и заметно понизить скорость сканирования.

Физическое разрешение, истинное разрешение, реальное разрешение : всё, что как-то определяется механизмом сканера.

Интерполяционное — произвольно выбранное разрешение, до которого программа сканера якобы берётся «сама рассчитать» недостающие точки (например, выдать 16×16 точек, получив со сканера 3×3 точки). Ценность величины этого показателя сомнительна и он не имеет совсем никакого отношения к механизму сканера. Заметим, что оригиналы типа гравюр иногда действительно лучше увеличивать, сканируя с интерполяционным разрешением, масштабирование же цветного изображения обычно всегда лучше делать в Adobe Photoshop и сканировать при этом с разрешением, равным оптическому (то есть для сканера с указанным «оптическим» — на самом деле физическим — разрешением 300×1200dpi надо выставлять 300 dpi). Если Вам нужно отсканировать полноцветное изображение с разрешением меньше оптического, то лучше задавать разрешение, кратное оптическому (то есть для сканера 300×1200 dpi выставлять 300 dpi или 150 dpi, но не 200 dpi!) или ближайшее большее и масштабировать в Adobe Photoshop.

Важно : главная задача при сканировании полноцветного изображения — получить на выходе сканера максимум РЕАЛЬНОЙ информации. Информация с отдельной ячейки CCD-матрицы реальна, а вот результат, например, сканирования с разрешением 2/3 от оптического — интерполяция драйвером или контроллером сканера информации с трёхсот ячеек в двести пикселов.

Какое оптическое разрешение нужно для Вашей работы:

Для программ распознавания текста обычного размера (не микрофильмов) 200-300 dpi, для работы с графикой определить чуть сложнее. Максимальное разрешение, с которым ещё имеет смысл сканировать, можно посчитать по формуле «для обеспечения хорошего запаса по качеству разрешение сканирования должно в 1,5-2 раза превышать умноженное на коэффициент масштабирования разрешение файла, подающегося на устройство печати ». Если оригинал напечатан офсетным способом (это вся печатная продукция) и подавление растрового муара выполняется не драйвером сканирования, а в программе Adobe Photoshop — разрешение при сканировании установите выше ещё в 2 раза. Сканирование с более высоким разрешением будет просто тратой времени. Нижняя граница разрешения сканирования определяется возможностями компьютера, на котором будет обрабатываться отсканированное изображение (растровый файл полноцветной картинки формата А4 с разрешением 300 dpi имеет размер более 20 Мб), и визуальным восприятием готового отпечатка. Например, растровые файлы для печати больших полноцветных плакатов для наружной рекламы готовятся с разрешением 50-100 dpi не только из-за огромного размера этих файлов (сотни мегабайт), но и потому что дальнейшее увеличение разрешения уже не улучшает восприятие плаката.

Обратите внимание : разрешение полноцветного файла для печати на цветном принтере — это отнюдь не разрешение печати принтера! Так как каждая точка полноцветного изображения с «8 бит на цвет» может иметь 256 градаций по каждому цвету, а точка, печатаемая обычным принтером, в данном месте либо есть, либо её нет. На практике для печати в масштабе 1:1 разрешение исходного растрового изображения обычно должно быть от 150 до 300 dpi. При этом напечатанное с файла 300 dpi изображение визуально может быть оценено как отличное. Принтер с одноцветными точками использует свои 600, 1200 или 1440 точек на дюйм для передачи полутонов, так что его полутоновое разрешение будет равно одноцветному, поделённому на 16 (грубое упрощение, но в общем верно). Для сублимационной и других Contone-технологий каждая печатаемая точка может иметь некоторое число оттенков (для сублимации любая точка может быть любого из 16 млн. цветов и его полутоновое разрешение равно одноцветному).

Сканер с оптическим разрешением 600 dpi позволит отсканировать фотографию 10×15см с количеством точек, достаточным для печати её на разворотё журнала. Сканируя с оптическим разрешением 3048 dpi для рекламного уличного щита, вы можете увеличить ваш оригинал в 50 и более раз.

Файл для вывода на плёнки, передаваемые в типографию, рекомендуется готовить с разрешением в 1,4 раза выше линиатуры вывода (некоторые эксперты рекомендуют разрешение файла в 2 раза выше линиатуры, но никак не ещё более высокое).

Кстати, встретив занимающегося цветом в издательстве человека, проникновенно попросите его объяснить смысл понятия линиатуры (здесь названа условным термином «полутоновое разрешение»). Сведущий человек ощутит необходимость немедленно и как следует выпить пива для обсуждения столь концептуального вопроса — линиатура может быть и задаваемым входным параметром…

Количество бит на цвет (глубина цвета, разрядность)

Обычное количество двоичной информации о цвете одной точки полноцветного изображения в компьютере — 24 бита на каждую точку, по 8 бит на каждый из основных цветов RGB, что даёт свыше 16 млн. вариантов цвета этой точки. Более тонкие оттенки глаз не различает, и устройства вывода обычно не воспроизводят. Почему же сканеры и графические пакеты бывают 48-битными? Технологический ответ: CCD-матрица в сканерах более высокой разрядности обычно чувствительнее и имеет меньший собственный шум, аналого-цифровой преобразователь качественнее и имеет меньший собственный шум, и так далее.

Математический ответ : потому что на каждом этапе преобразования информации — при гамма-коррекции, работе программы цветосинхронизации, обработке изображения в графическом редакторе, цветоделении при выводе на печать — младшие разряды перестают содержать полезную информации. Дорогие 36-битные (и выше) сканеры используют так называемые загружаемые кривые гамма-коррекции, в них корректировка информации о цвете точки производится не пересчётом в драйвере полученных уже с выхода сканера данных, при котором теряется полезная информация в младших битах, а внутри сканера, возможно даже ещё на этапе аналого-цифрового преобразования. В некоторых 30-битных моделях используются подобные технологии, и, по заявлениям производителя данные от них содержат столько же полезной информации, сколько обеспечивают «обычные» (видимо, без аппаратной гамма-коррекции) 36-разрядные сканеры. И ещё: сканер, оперирующий данными большей разрядности, может иметь больший динамический диапазон и может «различить» больше деталей на изображении, особенно в тенях (здесь под деталями имеются в виду не мелкие штрихи, а градации насыщенности или яркости — «белый медведь в снежном буране »).

Важно : очевидно, что аналого-цифровой преобразователь большей разрядности (например, 36-битный) может быть подключен к такой же CCD-матрице, что и в 24-разрядном сканере. На практике сканер большей разрядности не обязательно будет иметь больший РЕАЛЬНЫЙ динамический диапазон.

Если устройство печати использует красители CMYK и может воспроизвести 256 оттенков по каждому из этих цветов для каждой данной ему на входе полноцветной точки, то совсем не будут излишеством полученные со сканера 36 бит описания цвета этой точки, заметим, в цветах RGB.

Обратите внимание : разрядность данных, передаваемых в компьютер (а именно в модуль сканирования), может быть меньше разрядности данных внутри сканера.

Профессиональные модели обычно имеют возможность выбора разрядности передаваемых данных (например, 36 или 24 разряда) и динамический диапазон 3D и выше. Однако и в категории цен «от 1000у.е.» встречаются модели (обычно они заметно дешевле «полноразрядных»), у которых в компьютер передаются только 24 разряда. Объясняется это наличием некоего «фирменного» алгоритма преобразования цветовой информации из разрядности сканирования (30 или 36 бит) в 24 бита на выходе. Заметим, однако, что у продукции лидеров издательского рынка подобных «улучшений» не замечено.

Кстати, в цветном режиме сканеры большей разрядности обычно сканируют чуть (процентов на 10) медленнее, чем предыдущие модели. Оно и понятно — данных стало больше на 20 процентов.

Диапазон оптических плотностей, максимальная плотность.

Параметр, о котором не все продавцы бытовых сканеров слышали и который у сканеров до $500 не всегда сообщается производителем. Оптическая плотность — это характеристика оригинала. Вычисляется как десятичный логарифм отношения света падающего на оригинал к свету отраженному от оригинала (для непрозрачных оригиналов) или прошедшему (для слайдов и негативов). Минимально возможное значение 0.0 D — идеально белый (прозрачный) оригинал. Значение 4.0 D — предельно черный (непрозрачный) оригинал. Применительно к сканеру его диапазон оптических плотностей характеризует способность сканера различить близлежащие оттенки (это особенно критично в тенях оригинала). Максимальная оптическая плотность у сканера — это оптическая плотность оригинала, которую сканер еще отличает от «полной темноты ». Все оттенки оригинала «темнее» этой границы сканер не сможет различить. На практике это означает, что «офисный» сканер может потерять все детали как в тёмных, так и светлых участках даже обычной фотографии, не говоря уже о сканировании слайда и тем более негатива.

Какие бывают оригиналы и сканеры ?

Обычная цветная фотография и печатная продукция — до 2.5D. Негативы и рентгеновские снимки - 3.0-3.6D. Недорогие планшетные сканеры имеют динамический диапазон 2.0-2.7D, хорошие 36-битные 3.0-3.3D, новейшие модели — 3.6D. Диапазон оптических плотностей сканера определяется отнюдь не яркостью лампы, как может показаться, а связан с качеством (а так же типом и разрядностью) АЦП, CCD-матрицы и алгоритммом работы контроллера сканера. При большой освещённости — матрица «слепнет», а АЦП имеет верхний предел, напряжение выше которого не различается. При малой освещённости — матрица имеет порог чувствительности и собственный шум, а АЦП имеет вес младшего разряда, напряжение ниже которого не различается. Если я не ошибаюсь, математический предел динамического диапазона для сканера с 30-бит АЦП — 3.0D, 36-бит — 3.6D (десятичный логарифм от числа возможных градаций для каждого цвета, которое равно 2 в степени количества разрядов на один цвет). Реально часть разрядов «сьедают» преобразования и шумы.

ВАЖНО : производители могут указывать совершенно разные данные о диапазоне оптических плотностей. Реальный диапазон — определяется по результатам сканирования образцового оригинала.

Расчётный диапазон - некая цифра, видимо являющаяся компромиссом между запросами отдела маркетинга и реальными показателями. Необычно высокое значение наверняка относится сюда.

Все встретившиеся пока сканеры ценой до 1000 долларов выдавали 24-разрядные данные и имели реальный оптический диапазон 1.8-2.5D (в документации при этом может быть и 2.7D и даже 3.0D).

Максимальная встреченная разница между заявленным и реальным динамическим диапазоном - 0.6D.

Dmax — максимальная оптическая плотность. Динамический диапазон меньше этого значения на величину Dmin — обычно Dmin=(0.1-0.2)D . (Способность сканера различать яркие участки тоже ограничена).

Обратите внимание : не удастся с приемлемым качеством отсканировать негатив с помощью обычного 30-разрядного планшетного сканера, даже если к нему и продаётся слайд-модуль. Даже имеющий лучшее в своем классе значение реального динамического диапазона 30-bit сканер позволяет терпимо сканировать цветные слайды — но не надо рассчитывать на приемлемые результаты с художественными чёрно-белыми негативами, снятыми профессиональным фотографом. Для негативов нужен сканер другого класса. Вообще, для использования в полиграфии негативы и требующие дополнительной цветокоррекции слайды владельцу сканера с максимальной оптической плотностью ниже 3.0D лучше сканировать «на стороне», а на слайд-модуле сэкономить, тем более что стоят они для некоторых моделей до 700 долларов. Недорогие слайд-сканеры не являются выходом из положения — обычно их характеристики и качество сканирования не лучше, чем у планшетных сканеров.

Приёмный элемент — CCD-матрица

Один из важнейших узлов, влияющих на качество сканирования. Приводимая в документации характеристика — число элементов на линию (на цвет). Число элементов, поделённое на ширину рабочей зоны сканера, равно оптическому разрешению (оно собственно этими двумя параметрами и определяется).

Не сообщаемые, но чрезвычайно важные параметры матрицы:

  • уровень шума — ограничивает динамический диапазон и реальное число разрядов данных, содержащих полезные данные. В принципе ничто не мешает к дешёвой шумящей матрице подключить 36-битный АЦП, но вряд ли качество получаемого изображения от этого улучшится. Правда, и не ухудшится.
  • разброс чувствительности от ячейки к ячейке — даже если в сканере предусмотрена калибрация, она выполняется по усреднённым значениям с нескольких ячеек.
  • уровень перекрёстных помех — ярко освещённая ячейка влияет на соседние.
  • совмещение цветов — в однопроходных сканерах цвета разделяются тремя линейками CCD-матрицы.

Поскольку отбракованные матрицы явно не будут выбрасывать, а продадут как некондиционные по сниженной цене, угадайте, в каких сканерах они окажутся?

В этом году появились сканеры начального уровня с приёмным элементом CIS, но никаких реальных преимуществ, кроме малой толщины сканера, пока ожидать от них не стоит. На деле эта технология может оказаться не совсем приспособленной к полноцветной работе, несмотря на большую разрядность.

Качество сканирования: наличие артефактов, резкость, шумы.

«Сканеры 30-битные 600×1200dpi» стоят по-разному. Потому что эти цифры ещё не гарантируют реальное качество отсканированного изображения. Различия между качественным механизмом и «самым дешёвым в Московской области» сродни разнице между фотоаппаратами. «Зеркалкой» с пятилинзовым (без Zoom) объективом можно снимать на такую же плёнку, что и пятидесятидолларовой «мыльницей» с пластмассовой линзочкой и фиксированным фокусом, но снимки с «мыльницы» могут заставить пожалеть не только о потраченных на неё и печать фотографий деньгах, но и подпортить удовольствие от отпуска.

Разноцветные повторы вокруг контура объекта, цветные пятна, «мутность» и нерезкость изображения — все эти неприятные сюрпризы почти гарантированно встретятся в радикально дешёвых моделях.

Контроллер сканера

Трудно познаваемая в силу закрытости информации о применяемых алгоритмах функциональная часть сканера, оказывающая огромное влияние на скорость работы сканера и точность цветопередачи.

Зачастую производитель упирает на то, что в его сканерах (читай — в контроллере) применены уникальные технологии. Видимо, покупатель должен проникнуться верой в небывало высокое качество изображения именно этого сканера, обеспечиваемое наличием этих технологий только в нём одном. Действительно, названия «фирменных» технологий у каждой фирмы свои. Лучшее, что можно узнать о них, это обещаемый результат. Общие слова типа «небывало четкого изображения с яркими и сочными цветами » лучше отбросить сразу. При работе с полноцветным изображением есть эталонная точка отсчёта — профессиональные издательские модели. Если уж «машинный разум», своими тайными методами делающий без участия человека из нерезкого слайда со сдвинутыми цветами конфетку, не реализован в них — откуда ему взяться в сканере ценой до 1000 долларов, произведённом фирмой, никогда не имевшей отношения к разработке техники для профессиональной работы с цветом?

Интерфейс может быть разным.

Собственные (совсем нестандартные) интерфейсы, сканер поставляется со своей уникальной картой и работает только с ней. Эта карта может не заработать в компьютере после Upgrade или выйти из строя.

SCSI (более или менее, не всегда Fast SCSI-2). Если Вы собираетесь использовать сканер не с поставляемой в комплекте картой, учтите, что лёгкая совместимость получается только с контроллерами Adaptec, причём не UltraSCSI модификациями. Все остальные варианты могут принести проблемы (я вполне понимаю, что значит ASPI-compliant, но уж поверьте — в данном случае лучше «жить с ISA», чем с не-Adaptec для PCI.)

Поставляемые в комплекте со SCSI-моделями интерфейсные карты «не-Adaptec» не обещают подключение других SCSI-устройств, хотя бы потому, что не снабжены драйверами (но для некоторых драйвера можно найти самостоятельно). Однако такие карты напрямую понимаются драйвером сканера и обеспечивают максимально простой и удобный процесс первоначального подключения сканера и перехода на новые версии операционных систем. Некоторые из этих карт не требуют выделения фиксированного прерывания.

Adaptec позволит подключить что угодно, но требует прерывания и некоторой возни с установкой. Размер буфера данных в планшетных моделях варьируется от 64 кБ до 3 МБ.

LPT (и его варианты, с поддержкой или требованием EPP или Bi-Directional).

Важно : сканеру может быть необходимо наличие одного из скоростных вариантов параллельного порта. Если EPP обычно есть всегда, то необходимый для сканеров Epson вариант 8-бит Bi-Directional реализован не везде. «Проходной» разьём для подключения принтера ещё не гарантирует работу с ним любого принтера.

PCMCIA (PC CARD) — данный сканер с данным Notebook могут вместе работать или нет, лучше пробовать!

Программная часть

Современные программы, работающие под Windows, общаются со сканером через поставляющуюся с ним в комплекте специальную программу — TWAIN-модуль (на Macintosh модуль сканирования выполняется как Plug-In для Photoshop). Все программы, поддерживающие стандарт TWAIN (таковы все известные программы, как графические, так и OCR), в теории должны работать с любым поддерживающим его сканером (таковы все современные сканеры). На практике некоторые программы распознавания русского текста могут не работать со сканером, с которым предварительно не тестировались разработчиком.

ВАЖНО : поскольку TWAIN-модуль сканера является обычной программой, эта программа может не работать под некоторыми операционными системами вообще (а различаются даже версии Windows 95), или работать из рук вон плохо. Здесь справедлив общий закон «качества драйверов» — драйверы неведомого производства работают не очень надежно, и с выходом очередной версии Windows для нормальной работы понадобится новый драйвер.

Некоторые полезные свойства, не всегда встречающиеся в TWAIN-модулях:

  • возможность автоматического определения настроек сканирования.
  • окно предварительного просмотра с выбором сканируемого участка и отображением результата производимых настроек и коррекции изображения в реальном времени.
  • плавные регулировки яркости, контрастности, гамма-коррекции.
  • выбор точек чёрного и белого, желательно и «пипеткой» и заданием значения.
  • фильтр подавления печатного растра, многоуровневый или настраиваемый.
  • инверсия (негатив) и отражение (переворот) оригинала.
  • встроенная система цветосинхронизации с набором профилей, позволяющая скорректировать сканируемое изображение под конкретное устройство вывода или преобразовать его в CMYK.
  • возможность сканирования через сеть.
  • разнообразные встроенные в драйвер фильтры коррекции резкости и подчёркивания границ изображения. Уступают имеющимся в Adobe Photoshop (исключение — программа LinoColor сканеров Linotype-Hell).

Функциональные возможности, встречающиеся в профессиональных моделях:

  • тональная коррекция раздельными по RGB/CMYK кривыми, раздельно в светах, тенях и полутонах.
  • компенсация «цветового сдвига » оригинала, численным заданием вычитаемого цвета или указанием образцового цвета, который должна иметь указанная оператором точка изображения после сканирования.
  • автоматическое вычитание цвета фотоплёнки слайда (не заменяет собой компенсацию цветового сдвига ввиду возможных собственных искажений цвета на слайде, но и не повредит).
  • возможность пакетного и группового сканирования, автоматическое распознавание слайдов в рамках.
  • выполнение цветоделения с заданием соответствующих профилей и параметров печати. Издательские пакеты обычно сложнее в настройке цветоделения, но выполняют его качественнее, чем драйвер сканера (исключение — программа LinoColor сканеров Linotype-Hell. Но и обходится она в настоящие деньги).
  • фильтр подавления печатного растра с возможностью тонкой настройки оператором.

Калибрация, характеризация, цветокоррекция и цветные мишеньки

Важно понимать разницу между двумя типами калибрации сканеров:

  • периодически проводимая калибрационная процедура по двум или даже одному оттенку серого цвета предназначена для компенсации старения лампы.
  • характеризация сканера — создание цветового профиля сканера для системы цветосинхронизации.

Первая лишь слегка меняет форму корректировочной кривой и не способна внести фатальные изменения в информацию о цвете точки. Цветовой профиль устройства же может выдавать советы типа «будем считать все 40-процентные чисто красные участки имеющими на самом деле ещё и 10 процентов синего, а все 50-процентные оставим без изменений ». Берётесь восстановить правильные оттенки у обработанных таким образом изображений?

Применяемые в производстве средства характеризации заметно мощнее идущих в комплекте с распространёнными типами сканеров, поэтому не стоит с ходу отвергать заводской профиль и считать, что некая процедура с участием цветной мишени даст заведомо лучший результат. Современные препресс-сканеры обычно поставляются откалиброванными под прилагаемый типовой профиль на заводе (как? «прошиванием» корректировочной таблицы) или же в комплекте с индивидуальным профилем и обеспечивают вполне приемлемую точность цветопередачи.

Обычные фотографии или слайды сами нуждаются в коррекции цвета - цвета даже на плёнке разных производителей передаются совершенно по разному, а фотографии из «экспресс-печати» обычно имеют радикально сбитый цветовой баланс, так как печать по умолчанию выполняется в режиме автоматической цветокоррекции.

Мораль : нет смысла создавать профиль сканера по цветной мишеньке на фотобумаге AGFA (заметим, срок годности этих мишеней — 1 год) для того, чтобы сканировать слайд на плёнке FUJI.

Также нет явной пользы от вычитания драйвером сканера цвета чистой плёнки при сканировании слайда, если всё равно будет производиться цветокоррекция.

Предназначенные для многократного использования изображения лучше сканировать без каких-либо коррекций, «как есть». Сохранив уже скорректированное изображение и подвергая его повторной коррекции, потеряете в качестве или вообще не сможете получить приемлемый результат.

ДЕЙСТВИТЕЛЬНО ВАЖНО : производя коррекцию цвета по изображению на мониторе, нужно хотя бы выставить его цветовую температуру (5000K, если это изображение будет печататься на бумаге) и гамму (1.8).

Также необходимо представлять себе работу систем цветосинхронизации: полученные драйвером сканера цвета точек могут быть вначале изменены им самим по не-всегда-понятно-для-каких-случаев-предназначенному профилю, если активизирована встроенная система управления. Причём попутно драйвер может пытаться подстроиться к монитору, тоже непонятно к какому, и внести предварительную коррекцию для принтера, в надежде что изображение не будут рассматривать, а будут печатать без всякой цветокоррекции. Далее данные передаются в программу, из которой производится сканирование. Если активирована её встроенная система управления цветом, может быть ЕЩЁ РАЗ проведена коррекция полученных данных по профилю неведомого сканера, затем по профилю неведомого монитора при выводе на монитор и по профилю неведомого принтера при печати. Поверх всего этого ещё есть операционная система и специальные программы цветосинхронизации, которые могут «подправить» передаваемые на принтер и монитор данные, ну и возможность автоматической цветокоррекции в драйвере или растеризаторе принтера.

Важно понять, что только одна система цветосинхронизации должна производить эти коррекции. Если в драйвере сканера уже выбрана цветокоррекция под принтер — прикладная программа и операционная система должны посылать данные на принтер без изменений, а цвета на мониторе будут «не те».

В полиграфии, кстати, цвет часто проверяют «вслепую» — не по монитору, а по процентному соотношению цветов в данной точке. Известно, какие значения соответствуют телесному цвету, траве, небу и так далее.

Как же выбирать сканер?

Ответ неожиданно прост — под поставленную задачу. Нужно всего лишь ответить себе — как будет использоваться отсканированное изображение, какими программами оно будет обрабатываться, на каких устройствах выводиться, какие требования к качеству изображения предъявляются, какая операционная система будет использоваться на компьютере, к какому интерфейсу должен подключаться сканер.

Если Вы собираетесь сканировать полноцветные изображения и затем печатать их — ищите в сканере признаки предназначения к издательской и дизайнерской работе. Для того, чтобы помещать цветные оригиналы на WEB в 256 цветах, высокое разрешение и большой динамический диапазон ни к чему, а вот стабильно работающий TWAIN-модуль и фильтр Descreen весьма желательны.

Если же нужно сканировать 35мм негативы с увеличением на всю страницу А4 цветного каталога на глянцевой бумаге, а на покупку сканера выделено 500 у.е. — лучше приберегите эти деньги для бюро сканирования.

Вообще, современный маркетинг почти всегда ещё на этапе разработки позиционирует товар только на одну типовую группу потребителей, и если, например, как основное достоинство видеомагнитофона активно рекламируется простота его использования (видимо, домохозяйками) — вряд ли в нем окажутся функции, необходимые для монтажа материала с камкордера. Позиционируйте свои требования к сканеру на рынке подобных устройств — почти всегда продукт нацелен на конкретный круг типичных задач и покупателей, и второстепенные для них функции могут быть реализованы крайне слабо. Ищите модели, у которых как наиболее выигрышные рекламируются полезные для Вашей задачи свойства, а не явно «посторонние» для неё. Фильтр подавления растрового муара и способность работать с мятыми чертежами формата А0 на «синьке» с неравномерным цветом фона обычно взаимоисключают друг друга.

Распространённая ошибка — попытка выбрать сканер для издательских работ из ориентированной на сегмент «типичное среднеамериканское офисное использование» продукции.

Обратите внимание : специализированные слайд-сканеры обычно имеют впоне обычную, сходную с планшетными сканерами конструкцию. Это означает, что их «слайдовая ориентация» сама по себе не даёт никакого преимущества в качестве сканирования, цена при этом сопоставима с ценой планшетного сканера со слайд-модулем, имеющего аналогичные характеристики.

Преимущества недорогих слайд-сканеров — высокая скорость работы и автоподатчик слайдов. Но они реализованы отнюдь не во всех моделях.

Положительные отзывы прессы и получаемые изготовителем призы на протяжении нескольких лет — очень неплохо. Совет незаинтересованного знакомого, подходящего на роль эксперта — еще лучше.

Важно, однако, особенно применительно к издательским задачам, правильно интерпретировать прочитанное и услышанное: дело в том, что абсолютное большинство издательств мира (не России) работает на платформе Apple Macintosh, и если механически следовать восторженным отзывам «яблочных фанатов», выбирая сканер для работы в среде Windows, можно довольно сильно промахнуться. Многие ветераны производства издательской техники с давними традициями работы с Macintosh уделяют до невероятного мало внимания работе программного обеспечения своих устройств под Windows.

К тому же, тестирование в компьютерной прессе обычно проводится по случайно выбранным критериям, при этом важные для конкретного человека возможности остаются за кадром. Рекомендую внимательно прочесть данные в обзоре факты и оставить в стороне выводы. При чтении последнего обзора меня заинтересовало, а что бы этот человек сказал о высококлассном плоскостном сканере за 40000 у.е.? Наверное, что-нибудь вроде этого:

«Возможности автоматической пересылки данных на факс-модем нет, в тесте на сканирование текста показал самую низкую скорость из всех, использует устаревший интерфейс SCSI-II, подключение сложно для неспециалиста, интерфейсной карты в комплекте поставки нет, лампа долго прогревается. Правда, есть и плюс — хорошее качество сканирования фотографий, но в комплекте нет системы распознавания текста ».

При наличии соответствующих навыков полезно визуально оценить качество сканирования. Стоит проверить способность различать мелкие детали, например, концентрические линии и мелкий текст на банкноте. Проверить правильность цветопередачи на незнакомом компьютере представляется малореальным, особенно учитывая возможные искажения, вносимые неправильно настроенными системами цветосинхронизации сканера, графического редактора или операционной системы.

Рекомендую сразу отсеять модели от относительно небольших фирм, предлагающих сканеры менее двух-трёх лет (ввиду опасений в том, что через год им надоест торговать сканерами и заодно поддерживать уже проданные), а также модели, драйвера к которым нельзя свободно получить с Интернета. Помните, что без стабильно работающего драйвера (TWAIN-модуля) сканер не может быть использован по своему прямому назначению, «прикрутить» же к нему драйвер другого сканера не удастся и в комплекте поставки Windows «фирменных» драйверов для сканера тоже нет. Особенно актуально это в ожидании Windows98/NT5.

Насколько плохими могут быть драйверы?

РАДИКАЛЬНО плохими. Могут совсем не работать (или «виснуть через раз») под одним из вариантов Windows или с некоторыми программами (в частности, русскоязычными OCR).

Автору довелось подключать «недорогой» сканер одного из наиболее известных их производителей, который с драйвером из стандартной поставки (в цветной коробке с приличным набором программ!) не работал никак — ни под Win3.1, ни под Win3.11, ни под Win95, ни с русскими ни с английскими их версиями, ни через идущие в комплекте поставки программы, ни через OCR, ни через известные графические редакторы. Новая версия драйвера решила проблему, но как можно было запускать такой «подарок» в продажу?!

В статье Евгения Козловского «Дарёному коню…» в «Компьютерре» описан ещё более мрачный пример попыток работы со сканером Primax Phodox.

Обязательно убедитесь в возможности бесплатно получить новые версии драйверов и программного обеспечения сканера через Интернет. Некоторые производители не выкладывают свежую версию драйвера в свободный доступ, а предлагают бесплатно выслать её почтой купившим сканер за последние полгода и за 50-90 долларов остальным. «Выслать почтой за деньги » в Россию — для этого как минимум надо иметь кредитную карточку, причём имеющую реальное хождение за рубежом. Получить драйвер там, где вы купили сканер, бывает проблематично — обычно для этого приходится переписывать весь CD-ROM.

Лично я при выборе техники (особенно незнакомой группы) практикую субьективную оценку товара и производителя по вторичным признакам. Сразу отбрасываю производителя с явно скользкой рекламой на грани обмана, либо заявлениями «идеальное качество изображения и надёжность ». Если производитель обманывает хотя бы в одном случае, зачем смотреть дальше?

Индикатор качества техники — пластмасса. Попробуйте пальцем корпус ноутбука IBM и запомните ощущение. Заодно можно потрогать и соседние модели. Пока что не удалось встретить нормальной техники в корпусе из совсем плохой пластмассы.

Дополнительную информацию даёт упаковка. Коробка из мелованного картона с яркими картинками противоречит понятию «для европейского рынка». Идеал — картон вторичной переработки с неяркой маркировкой, при этом уплотнитель внутри —не пенопласт, а объёмные картонные элементы!

Обыкновенные сканеры не предназначены для сканирования слайдов и негативов из-за недостаточного количества подсветки. Однако есть хитрость, которая позволит это делать с помощью небольшого количества картона. Соорудив хитрую конструкцию можно перенаправить световой поток и добиться нужного результата.

Если в Вашем архиве завалялись старые негативы, которые хотелось бы перевести в цифровой формат, у Вас есть возможность отсканировать их. Но простое сканирование для этих целей не подойдет. Для того чтобы всё получилось, нужен мощный источник света, который должен находиться за негативом или много функциональный сканер.

Конечно, можно купить специальный сканер для пленок, но если у Вас уже есть обычное планшетное сканирующее устройство, вполне можно обойтись им. Для сканирования пленки или слайда можно использовать обычный картонный отражатель. Он будет захватывать свет, излучаемый сканером и отражать его с обратной стороны слайда. Такой отражатель даст возможность сканировать плену и слайды как обычные документы.

Для изготовления отражателя нам понадобятся следующие материалы:
Лист плотного картона формата A4 со стороной серебряного цвета
Карандаш
Ножницы
Скотч
Линейка

Инструкция




Шаг 1: На листе картона со стороны, где нет серебряного окраса, напечатайте или нарисуйте следующий шаблон.




Шаг 2: Вырежьте шаблон и согните таким образом, чтобы серебряная сторона была обращена вовнутрь.




Шаг 3: Соедините шаблон в треугольник. Он должен напоминать клин. При этом одна сторона останется открытой. Блестящая часть обязательно должна находиться внутри.




Шаг 4: Далее нужно склеить углы отражателя. После высыхания клея устройство готово к использованию.




Приступим к использованию нашего отражателя. На стекло сканера положите пленку или слайд. Сверху поместите отражатель. Чтобы достичь хорошего результата выровняйте одну сторону слайда с центром отражателя. Крышку сканера закрывать не нужно. Можно приступать к сканированию. Если в результате на снимке получится неравномерное освещение, то можно попробовать положить тонкий лист папиросной бумаги между негативом и отражателем. Бумага рассеет световой поток и не даст сканеру захватывать пространство за пленкой.

Добившись удовлетворительного результата, нужно обрезать изображение по контуру слайда, так как сканер сканирует всё стекло, а нам нужен только маленький кадр. Обрезку можно сделать в любом графическом редакторе. Для получения наиболее четкого изображения нужно выполнять сканирование с высоким разрешением. Рекомендуется использовать 1200 DPI.




После сканирования нужно будет провести небольшие фотоманипуляции с изображением. Если Вы сканировали негатив, то придется инвертировать цвета. Это можно выполнить даже в Microsoft Paint, так что тут затруднений возникнуть не должно. Также можно провести небольшую обработку снимка в любом графическом редакторе. Рекомендуется повысить яркость или контрастность.

Если во время сканирования на негатив попала пыль, её можно убрать мягкой кисточкой для объектива или косметической щеточкой. Чтобы удалить пятна или царапины можно воспользоваться инструментом лечащая кисть. Для этого можно использовать бесплатные программы, такие как GIMP или Paint.net. Они доступны для свободной загрузки и их легко найти в интернете.




Этот снимок демонстрирует (слева направо): прямое сканирование, инвертированное сканирование и окончательное изображение после удаления царапин и пыли. Вся работа заняла не более 10 минут.

В общем-то идея отсканировать и упорядочить старые фотографии, конечно же, вынашивалась давно, на такой объем работ по сканированию старых фотопленок (больше сотни) и фотографий (тысячи) решиться непросто. Вообще еще с детства хотел, чтобы у меня были оцифрованные старые фотографии прапрабабушек-прадедушек, и вот наконец спустя 20 лет решил сподвигнуться на это дело.

Сканер

Первое, в чем был вопрос - естественно сканер. В свое время, лет 7 назад, пытался оцифровывать негативы и решил запасти пленочный сканер. Денег особо не было, выбрал что подешевле, им оказался Miktotek Filmscan 35 .


По сравнению с монстрами сканирования, стоил он копейки, но и результат выдавал устрашающий. Я использовал к нему Silverfast как наиболее продвинутый софт в то время (может и сейчас). Не знаю, почему, но иногда мне при разных проходах это чудо выдавало то синюю, то зеленую фотку, то зависало все, это было непредсказуемо и очень грустно, над каждым кадром приходилось корпеть по 10-15 минут, выправляя гистограммы и осуществляя прочие танцы с бубном. Вобщем этот процесс отбил у меня охоту сканировать пленки на несколько лет, сканер так где-то и валяется.

Сейчас, обдумав все за и против, было решено следующее.
Было несколько моментов, которые надо было учесть:

  • сканировать по большей части буду не я, а родители, благо у них время сейчас есть
  • сканировать надо не только пленки, но и фото
  • сканировать надо много
  • сказочного бюджета нет

Кроме всего означенного я понимал, что сейчас пленка уже не является актуальным носителем, и поэтому скорее всего сканировать надо будет только один раз, правда может уйдет на это много времени.

Итак, пленочные сканеры отпали по двум причинам:
во-первых, предыдущий опыт показал, что за дешево нормальный такой агрегат не купить, а то, что дешево - ой, такой ад второй раз я не вынесу.
Во-вторых, покупать отдельно сканер для фоток и отдельно для пленки - тоже как-то дороговато и нецелесообразно.
Тем более, сказал я себе, если попадется что хорошее - отнесу в профессиональную лабораторию, уж на десяток кадров можно и разориться.

Посмотрев, что есть в продаже из того, что умеет сканировать кроме бумаги еще и пленку, выяснилось, что выбор невелик: или опять же заоблачные цены, или всего пара-тройка вариантов. Перерыв все работающие сразу после праздника магазины оказалось, что есть следующие приемлемые варианты:

  • Epson Perfection V330 Photo (A4, 4800 x 9600 dpi, USB 2.0, CCD,Film Adapter)
  • Epson Perfection V370, Photo (A4, 4800x9600 т/д, CCD, USB 2.0)
  • Canon CanoScan LiDE 700F (A4 9600х9600dpi 48bit CIS Слайд-адаптер USB2.0)
  • Canon CanoScan 5600F (A4 4800х9600dpi 48bit Слайд-адаптер USB2.0)

Остальное было или слишком дорого, от 10000, или, наоборот, ничего не умело. К сожалению, CanoScan 5600F отпал по причине отсутствия в данный момент в продаже, хотя по описанию очень неплох. Остальные оказались, по отзывам, примерно одинаковыми, но решающую роль сыграл тот факт, что для Epson"ов были драйвера для Linux, а поскольку хотелось бы работать не только под виндой, то в конце концов выиграл Epson Perfection V330 Photo. Нигде не смог узнать, чем же 330 модель отличается от 370, но поскольку линуксячьи драйверы упоминались только для 330, то остановился на нем, так сказать, «во избежание».

К сожалению под линукс попробовать еще не успел, но в виндовом софте понравилась функция удаления дефектов - на черно-белых старых фотографиях работает на ура. Но с ней тоже надо быть осторожным - иногда может за дефект посчитать что-то стоящее.

В отзывах по поводу сканера местами упоминается проблема с появлением полос при сканировании пленок - но я такого пока не наблюдал. Тем не менее на мой взгляд вот кое-что полезное по этому поводу, найденное в одном из отзывов на яндекс-маркете: «Спустя два года могу отчитаться об итоге расследования: в рамке сканера есть калибровочное окошко, где устанавливается баланс белого. Если туда попадают пылинки - получаются „битые пиксели“, которые при прогоне каретки дают полосы. Это, скорее всего, конструктивный дефект новой светодиодной подсветки (но кто же в этом сознается...). Итак господа, если у вас есть такой сканер,
удаляйте пыль.»

С каким разрешением сканировать - этот вопрос был не последним. Сканер выдает максимум 4800х9600, но при попытке выставить такое при скане фото 9х13см система стала материться на масштаб, пришлось уменьшать.

Критерий выбора разрешения простой: если считать, что печатать можно со стандартным разрешением 300dpi, то чтобы получить такое же изображение, надо иметь минимум 300dpi. Учитывая, что фото старые, то смысла сильно завышать эту цифру нет - все равно физическое разрешение не позволит получить качество из ничего. Опять же, вряд ли кто-то когда-то захочет печатать плакат с изображение прадеда на формате А1 или даже А4. Если кто и напишет книжку - то вряд ли будет картинка больше чем на лист. Вобщем решил, что для совсем старых сойдет двукратное превышение, для более качественных и более поздних - трехкратное, т.е. 600dpi и 900dpi соответственно. Далее выбрал то, что было наиболее близко из того, что выдала софтина, что шла со сканером.

Для негативов решил использовать максимум - не зря же покупал с таким разрешением… Скорее всего это перебор 4800х4800dpi, но всегда можно потом урезать, но главное, что потом уже не придется пересканировать с другими параметрами и можно спать спокойно.

Сканы сохраняются, естественно, ни в коем случае не в jpeg, дабы избежать потерь на сжатие. Все - только tiff. Вроде, конечно, место кушает побольше, но зато раз отсканировать - и потом проблем не знать: что хочу, то и делаю. К этому я тоже пришел не сразу, но практика показывает, что если сэкономить сейчас - потом буду жалеть и возвращаться к этому вопросу, а так, если все по-максимуму - то потом и сожалеть не о чем.

Каталогизация

Естественно, после оцифровки надо все это дело как-то разгребать. Основной задачей было подписывание пра-пра-родственников, ибо я хотел сохранить историю семьи на будущее, а без грамотных комментариев там никто никогда не разберется.

Вариант сразу обрабатывать фотки и выкладывать на сайт не подходил по двум причинам: во-первых, надо обработать все и сразу, а это время, да и родители в этом ничего не понимают; во-вторых, технологии меняются, и кто б знал, как через пару десятков лет будет выглядеть сайт, если вообще он будет как-то существовать.

Использование умной программы-каталогизатора не подходила по той же существенной причине - нет никакой гарантии, что через несколько десятков лет эта софтина будет жива и соотвественно никто не поймет, что, где и как хранится в ее умном уникальном формате.

На ум пришло решение хранить описание в обычном текстовом файле с тем же именем, что и фото - текст он и в африке текст, наверняка прочитать сможет кто угодно спустя десятиления, даже если придумают еще какой-то супер-юникод, все же это намного надежнее, чем специальный софт. Но как программист я с ужасом смотрел на этот вариант - ну некрасиво и все тут. Да и неудобно в процессе работы.

Родители сказали, что вообще хотят как в ворде - вот фотка, вот подпись - и все понятно. От такого предложения волосы встали дыбом, ибо опять же - сегодня ворд есть - завтра его нет.

Еще один вариант - хранить подписи в EXIF. Тут смущало то, что при обработке картинок многие софтинки EXIF просто игнорируют, в результате потерять драгоценные подписи может оказаться невосполнимым.

В общем, проанализировав всю ситуацию, принял решение: скнируем фото, подписываем его в виде EXIF и потом все эти картинки с подписями делаем read-only, дабы не было никакого соблазна что-то менять, и таким образом гарантируем сохранность информации. Хочется менять - делай копию - и вперед. Ну и бэкапы конечно. И вообще, в конце концов на то мы и программисты, дабы набросать небольшой скриптик, чтоб весь EXIF можно было на всякий случай экспортнуть в текстовый файлик, «во избежание»:)

Для работы с EXIF в линуксе есть куча инструментов командной строки, но это неприемлемо для удобной работы с большим количеством картинок. Тем не менее, вот что есть: exif , exiftool , exiv2 , погуглив, можно найти более подробную информацию. Далее я использовал exiftool для пакетной обработки, но об этом позже.

Смотрим, что есть из GUI. Поизучав, что нам предлагает OpenSource сообщество, как-то остановился на DigiKam - «digiKam is an advanced digital photo management application for Linux, Windows, and Mac-OSX», как написано у них на сайте.
Редактировать я решил в GIMP , GNU Image Manipulation Program, аналог фотошопа, но opensource. Поэтому возможность редактировать фото для софтины каталогизации отдельно не требовалась, а вот в самой каталогизации подкупили несколько вещей.

Во-первых, DigiKam редактирует EXIF, что мне и надо.

Во-вторых, все фото сразу на экране, подписываем в окошке рядом и сразу переходим к следующей - быстро, просто и удобно.

В-третьих, было замечено, что в самой EXIF есть несколько похожих тэгов для комментирования: Comment , UserComment , ImageComment , так вот, DigiKam пишет сразу во все, так что вероятность, что эту информацию прочитает другой софт, достаточно велика.

Кроме того, читая отзывы, меня порадовала мысль, что кроме просто EXIF софтинка умеет вести каталог, причем ничего никуда не копируя, в отличие от многих других, а просто обрабатывая все на месте. Это было огромным плюсом - я не искал эту возможность изначально, но она оказалась как нельза кстати. И что мне понравилось - кроме занесения инфы в EXIF, она пишет ее в свою базу и потом фото удобно сортировать и искать по меткам, тэгам, описаниям и т.п. И даже если в какой-то момент софт исчезнет и база тоже - то копия данных останется в EXIF, что, собственно, мне и надо.

Некоторые интересные мысли по каталогизации описаны в уже упоминавшейся статье «Опыт создания каталога и индексации семейного фотоархива. Индексация и оцифровка фотопленок» . Так вот, все или почти все эти данные тоже можно держать в EXIF и при необходимости экспортить в любой формат, как нам будет удобно.
Дополнительным плюсом DigiKam является то, что можно в качестве обложки альбома можно выбрать любое фото, а мысль иметь в качестве обложки фото самого бумажного альбома мне понравилась, за что спасибо автору.

Еще один неочевидный момент, с которым я столкнулся при работе с DigiKam: если нет прав на запись в фото-файл, то софтина молча пишет только в свою базу, никак не давая понять, что есть проблемы. Я долго пытался разобраться, почему подпись в проге есть, а в файле - нет, тем более, что в настройках установлена опция «сохранять в файле». Так вот, имейте это в виду - проверяйте права доступа, а то можете потом долго материться.

Выкладываем на сайт

Итак, решены основные задачи - сканирование и каталогизация. Теперь настало время похвалиться перед родственниками, показать знакомым фото. Естественно путем выкладывания фото на сайт. Не так давно я уже делал софтинку для этого дела: сложил нужные фото в
каталог, запустил - и готово, сделался альбом. Об этом я писал на хабре в прошлый раз, «Simple automation: фотоальбом» . Теперь же, используя DigiKam, я решил, что прямо в EXIF-тэгах можно помечать фото, надо его помещать в фотоальбом или нет, поскольку при сканировании были всякие картинки, которые на сайт выкладывать не стоит. Да и комментарии теперь можно брать из EXIF.

Вроде бы все хорошо, да не очень.

На сайте все обрабатывается в PHP, и там есть, как мне казалось, замечательная функция для работы с EXIF, read_exif_data() , но как показала практика, эта недофункция показывает только часть данных, абсолютно умалчивая про остальное. Перерыл все что мог - и мечта о легкой жизни канула в лету, пришлось вытаскивать EXIF из файлов на этапе генерирования альбома, благо инструменты командной строки имеют место быть.

В итоге переписал скрипт, вспомнив язвительный комментарий к предыдущей своей статье «Генератор php-файлов на Perl… Месье знает толк...», посмеялся про себя, что все же был прав, что полностью не положился на PHP - вот она мне подставила бы сейчас ножку, а так пара минут - и проблема решена.

Итак, при обработке фото в DigiKam помечаем фото флажком (он там называется PickLabel). Флажок пишется в файл в EXIF. Когда процессим все файлы из каталога - вытаскиваем флажок с помощью exiftool:

$flagPickLabel = `exiftool -b -PickLabel "$fname_in"`;

Ну и далее в зависимости от флажка - если стоит - то процессим, если нет - пропускаем. Все задается в командной строчке, дабы было удобно. На самом деле тут можно обрабатывать много всего, это уже на вкус и цвет кому что надо.

Ссылка на исходники, если вдруг кому-то понадобится внимательно посмотреть или даже применить: photo_album-r143.tar.gz . Как пользоваться - упомянуто в предыдущей статье, не буду повторяться.

На этом спасибо за внимание, а если кому пригодилось - то безмерно рад.
Критика приветствуется.

UPD : Вот случайно нашел еще на хабре про сканирование негативов - удивляюсь, как раньше не заметил. Пусть будет тут до кучи.

Теги:

Добавить метки

Читая в околокомпьютерной периодике заметки, посвященные настоящему и будущему любительской фотографии, невольно ловишь себя на мысли, что общественность планомерно готовят к торжественным похоронам традиционного "пленочного" процесса. Нет слов, успехи индустрии цифровых фотоаппаратов впечатляют, быстрота переноса отснятого материала на компьютер для последующей обработки, удобство и "вечность" хранения кадров, возможность экономии времени и средств на покупке и проявке пленок - более чем весомые аргументы. Камеры с матрицей, имеющей более 2 Мегапикселей, позволяют получить кадры, просмотр которых на экране монитора или печать на ограниченных по размеру форматах вызывает бурные положительные эмоции. Но...
Тем, кто предпочитает оперировать абсолютными величинами, рекомендуем сравнить три важных показателя цифровой и аналоговой фотографии.

Реальное разрешение стандартного (24x36 мм) кадра любительской цветной негативной пленки ISO 100 находится на уровне 100-110 точек/мм (2550-2800 dpi) и таким образом на один кадр приходится в среднем около 8,6-10,5 Мегапикселей (при "правильном" экспонировании и "правильной" же проявке). Сравните с 2-3,5 или более типичными 1-1,5 Мегапикселей доступных на рынке любительских моделей цифровых фотоаппаратов.
Не вдаваясь в тонкости химических реакций фиксации цвета в эмульсии, заметим, что в общем случае изображение на пленке имеет глубину цвета , превышающую 36 бит (> 68,7 млрд. оттенков). Цифровые камеры в абсолютном большинстве обеспечивают максимальную глубину цвета до 24 бит (> 16,7 млн. оттенков). Человеческий глаз практически не способен увидеть разницу между 24 и 36-битным изображением, но любая более-менее профессиональная обработка с последующей печатью требует для корректных преобразований именно 36 бит, кроме того 24-битное изображение имеет ограничения по отображению малоконтрастных деталей.

Важный момент - сравнение стоимости качественной любительской цифровой модели (разумный минимум с соответствующим разрешением - от $550-600) и пленочного фотоаппарата (от $250).
Таким образом, цифровое любительское фото до сих пор фатально отстает от аналогового по четкости, точности цветопередачи и доступности камер, хотя и опережает его по эксплуатационным удобствам, низким накладным расходам и возможности редактирования с помощью компьютера.
"Компьютеризованный" любитель оказывается перед дилеммой - качество отпечатков плюс невысокая стоимость самой камеры или удобство плюс низкие расходы.
К счастью, есть альтернативный вариант, объединяющий некоторые основные достоинства обоих решений. Речь - о пленочных сканерах (они же "фильм-сканеры", слайд-сканеры и т.п.), позволяющих владельцу пленочного фотоаппарата перенести изображение с обычной негативной пленки или слайда на жесткий диск компьютера в цифровом виде, пригодном для дальнейшей обработки или хранения как "вечной" копии.

Пленочные сканеры - хорошие и... разные

Понятно, что далеко не каждый слайд-сканер будет удачной покупкой, модели отличаются не только качеством изготовления (и ценой), но и конкретными характеристиками.

Формат негативов и слайдов , которые можно оцифровать, пользуясь конкретной моделью (35 мм, APS и т.д.) - первая характеристика, на которую следует обратить внимание. Вне зависимости от других достоинств выбранного сканера, он будет бесполезен, если не поддерживает формат имеющихся пленок.

Оптическое разрешение - одна из наиболее важных характеристик пленочного сканера. Как уже говорилось выше, предел разрешения любительской пленки составляет около 2800 dpi (профессиональной - от 3150 и выше), поэтому чем ближе оптическое разрешение сканера к этой величине, тем меньше потери детализации при сканировании. В тоже время более высокие величины не дадут заметного преимущества при обработке любительских материалов.
Если оцифровка производится для последующего вывода на принтере (с оптимальным минимумом разрешения отпечатка в 300 dpi), то для печати на формате A4 (с увеличением более чем в 8 раз) требуется сканировать оригинал с разрешением около 2400 dpi, A6 (или 10x15 см) - 1200 dpi и так далее.
Учтите, что для каждого формата указаны минимальные величины - для вывода участка кадра на полной странице A4 при тех же 300 dpi понадобится более высокое разрешение.
Сканирование для других целей предъявляет свои требования. Так, оформление страниц в Интернет не требует разрешений свыше 75 dpi, поэтому для кадра, который предполагается увеличить в 4 раза, достаточно будет сканирования всего лишь при 300 dpi (с соответствующим сокращением размера файла).

Помимо оптического разрешения в характеристиках сканеров часто указывают и значительно большее интерполяционное - полученное за счет математической обработки сканируемого изображения (иногда еще и за счет меньшего шага передвижения сканирующей головки). Серьезных улучшений при его использовании с полноцветными оригиналами практически нет, так как разрешение воспринимающей свет чувствительной линейки остается тем же, а вот время сканирования часто возрастает многократно.

Диапазон оптической плотности (динамический диапазон) - чрезвычайно важный параметр для полноценного сканирования негативов и слайдов.
Само определение оптической плотности относится к сканируемому оригиналу, оно характеризует отношение исходного потока света к свету прошедшему через пленку (вычисляется как десятичный логарифм такого отношения). За минимальное значение оптической плотности принят 0 (абсолютно прозрачный участок, свет падающий равен свету прошедшему), за максимальное теоретически возможное - 4 (очень черный участок, практически не пропускающий свет).

Диапазон оптической плотности определяется как разница между минимальной (всегда не 0 - обычно от 0,1 и выше) и максимальной оптической плотностью (всегда не 4, обычно меньше 3,9-3,8), с которыми может работать сканер. На практике ширина диапазона оптической плотности для слайд-сканера - это его способность фиксировать малоконтрастные детали в тенях/полутенях и на ярких участках (чем больше ширина диапазона - тем больше градаций плотностей способен разделить сканер и тем более близкие по плотности участки будут различимы). Используя модель с узким динамическим диапазоном можно получить лишь излишне контрастное изображение, с "плоскими" тенями и ярко освещенными участками, лишенными деталей.

Поясним на примерах. Если для сканера указан диапазон 3,0D , то максимальная плотность сканируемых участков, отличающихся от черного, превышает минимальную в 1000 раз (с соответствующим количеством промежуточных градаций). Все, что лежит за верхней границей для сканера равнозначно черному цвету. Даже если усилить освещенность, потерь не избежать - "отступит тень", но зато исчезнут детали участков с наименьшей плотностью.

Сканер с диапазоном 3,6D способен на большее - максимальная плотность превышает минимальную в 3980 раз, а это почти в четыре раза больше градаций, чем у предыдущего примера. Отсканированное изображение становится более объемным, а переходы цветов и полутени - более мягкими и естественными.
В настоящее время минимально допустимым показателем для слайд-сканера считается 3,0D, хорошим - 3,2D-3,4D, отличным - от 3,6D и выше.
Диапазон оптической плотности прочно связан с еще одной характеристикой сканера - глубиной (разрядностью) цвета .
Как уже говорилось выше, 24-битного представления цвета вполне могло бы хватить для просмотра фото, но для его последующей качественной обработки и получения широкого рабочего диапазона оптической плотности требуется 36-бит (12 бит на каждый основной цвет RGB или 12 бит на канал в Adobe Photoshop).

Зависимость предельно достижимой ширины диапазона оптической плотности от разрядности цвета в упрощенном виде выглядит так:
24-битное представление цвета (16,7 млн. цветов) обеспечивает лишь 8 бит на каждый цвет и 256 градаций серого, что приблизительно соответствует 2,4D ширины диапазона оптической плотности (256=10 в степени 2,4).
30-битное (1,07 млрд.цветов) - 10 бит на каждый цвет, 1024 градации серого и около 3,0D.
36-битное (68,7 млрд.цветов) - 12 бит на каждый цвет, 4096 градаций серого и около 3,6D.

Такие максимумы достигаются далеко не всегда, так как ограничения накладываются и другими факторами (для достижения 3,6D вся цепочка от высококачественной считывающей матрицы и блока АЦП до интерфейса должна поддерживать обработку и передачу 36-битной ПОЛЕЗНОЙ информации о цвете, свободной от шумов и помех).

В названии характеристики часто упоминается "внешняя" или "внутренняя". Внутри сканера может использоваться значительно более высокая разрядность (к примеру - 40 бит), которая требуется для компенсации шумов матрицы и др. операций, происходящих с потерями. Для пользователя же важны выходные характеристики сканера - то, что он получит в явном виде. В тоже время повышенная внутренняя разрядность в большинстве случаев расширяет диапазон оптической плотности, обрабатываемой сканером.

Собственный шум матрицы - характеристика, которая практически никогда не указывается в паспортных данных любительских сканеров, но может быть приблизительно оценена на практике (в демонстрационном салоне и т.п.) или выяснена у тех, кто уже имел дело с выбранной моделью. На практике собственный шум матрицы слайд-сканера проявляется при сканировании участков с наибольшей плотностью в виде цветного "мусора", ухудшающего общее качество изображения (естественность теней на слайдах и чистоту ярких участков на негативах). В лучших (и чаще всего дорогих) сканерах используют высококачественные матрицы, аналого-цифровые преобразователи и специальные алгоритмы подавления и фильтрации шумов (к сожалению, до захолаживания (понижения температуры) матрицы, используемого в астрономии, в любительских моделях еще не дошло). Кроме того, могут быть применены и специальные методы снижения шумов.

Диапазон глубины фокусировки - еще один параметр, который в явном виде практически никогда не указывается в выходных данных любительского сканера, но является очень важным при сканировании слайдов. Если расстояние до эмульсии негатива может быть задано подающим механизмом достаточно четко, то в случае слайда ситуация сложнее - толщина рамки редко точно равна стандартной, возможна заметная деформация пленки за счет напряжений, возникших при закреплении в рамке. Результат - сканер с узким диапазоном глубины фокусировки не может обеспечить резкость по всему кадру или даже оказывается вовсе не способен оцифровать слайд с приемлемой четкостью.
Узость диапазона глубины фокусировки может быть скомпенсирована наличием регулировки (полуавтоматической или ручной) или специальными приспособлениями для сканирования слайдов, извлеченных из рамок.

Скорость сканирования - параметр, имеющий небольшое значение при сканировании отдельных кадров, однако весьма важный, если предстоит обработать сразу несколько пленок. Быстрые сканеры способны обработать один кадр за 20-30 с, но как правило лишь в режиме "Норма" или "Стандарт" (при этом на сканирование одной пленки с 36 кадрами уходит от 25 до 40 минут, включая действия по смене отрезков негативов и возможному выбору настроек для отдельных кадров). Использование специальных режимов может увеличить время сканирования одного кадра многократно - до 3-8 минут (1,5-5 часов на 36-кадровую пленку, включая действия по смене отрезков негативов и возможному выбору настроек для кадров). С точки зрения затрат времени становится особенно важной последовательность обработки кадров, возможность обработать несколько кадров одновременно и т.д.

Интерфейс - характеристика, во многом определяющая скорость загрузки полученного изображения на компьютер и удобство подключения слайд-сканера. Наиболее быстрым интерфейсом, используемым в слайд-сканерах, был и остается SCSI (требует наличия в комплекте или в ПК контроллера SCSI и специальный кабель), следующим по быстродействию идет более новый USB (требует наличия контроллера и портов USB, помимо сравнительно высокой скорости передачи обеспечивает еще и "горячее" подключение - без перезагрузки ПК), замыкает список интерфейс параллельного порта. В последнем случае может быть предусмотрено как подключение к стандартному порту LPT, так и к отдельной плате.

Возможности программного обеспечения могут как значительно улучшить общие характеристики сканера, так и свести его достоинства к рекламным фразам. К примеру, "грамотный" автоматический конвертер маскированных негативов позволяет на хорошем сканере получить позитивное изображение с достоверной передачей цвета даже без "финишных" регулировок. Возможен (хотя и редко встречается) обратный вариант - отвратительная функция конвертации сделает модель практически бесполезной для сканирования негативов, требуя огромных затрат времени на настройку цветов полученного изображения в редакторе. Удобный интерфейс утилит существенно сокращает время на сканирование (непродуманный - многократно увеличивает). В комплекте программного обеспечения со сканерами обычно поставляется т.н. TWAIN -драйвер - специальный драйвер, позволяющий обращаться к сканеру и управлять им из различных программ обработки графики, совместимых с TWAIN (например, Adobe Photoshop). При этом не следует путать TWAIN-драйвер с драйвером для операционной системы - они имеют совершенно различное назначение.

Комплектность - оснащение сканера необходимыми приспособлениями и устройствами, кабелями, программным обеспечением и т.д. Важная характеристика с точки зрения готовности к работе прямо "из коробки" (все есть для подключения, калибровки, работы в установленной на ПК операционной системе, загрузки слайдов и негативов). Комплектность определяет и дополнительные возможности модели при сканировании в нестандартных ситуациях (к примеру, наличие специальной рамки позволяет сканировать слайды, извлеченные из толстых рамок и т.д.).

Понятно, что помимо всех перечисленных характеристик и сторон слайд-сканеров покупателя как правило волнует стоимость модели. Ценовой диапазон представленных на рынке вариантов, которые можно отнести к любительским, крайне широк - от $125 до $2800 (в случае верхней границы правильнее было бы говорить о полупрофессиональной категории), при этом более высокая цена не обязательно соответствует более привлекательным характеристикам.

Не удивляйтесь, если вы не обнаружили этих слов в характеристиках вашего сканера - производители не всегда указывают этот показатель. Но это вовсе не означает, что данная характерисктика не играет существенной роли в качестве получаемого изображения. Наоборот, многие специалисты сходятся во мнении, что это основной показатель качества сканера.

Что такое динамический диапазон?

Более точно этот параметр называется диапазоном оптических плотностей.

Оптическая плотность - это показатель, позволяющий численно измерить, насколько темным является оригинал. Для прозрачного оригинала оптическая плотность - это десятичный логарифм отношения общего потока света к потоку света, прошедшего через оригинал; для непрозрачных - отношения всего потока к отраженному свету.

Таким образом, чем темнее оригинал, тем больше его оптическая плотность. Например, значение оптической плотности 0,01 соответствует практически белому свету, а значения 4,0 и выше - почти черному, практически неразличимому глазом.

На любом слайде есть как светлые, так и темные области - целый набор различных оптических плотностей. Диапазон между самой маленькой и самой большой оптической плотностью на данном оригинале называется его динамическим диапазоном .

Динамический диапазон сканера

Динамический диапазон есть не только у оригинала, но и у сканера. Динамический диапазон сканера – это разность оптических плотностей, которую сканер может распознать.

Белый цвет все сканеры распознают достаточно хорошо. Другими словами, с минимальной оптической плотностью у них проблем нет. У большинства сканеров она равна 0,01 или даже меньше. Проблемы возникают при сканировании темных областей, где света очень мало. Здесь все зависит от чувствительности считывающего фотоэлемента: чем чувствительнее CCD линейка, тем лучше сканер распознает темные области.

Что значит «распознает»?

Под этим словом подразумевается сразу два действия. Во-первых, сканер должен отличить темный оттенок от максимально черного. Иначе многие темные области на сканированном изображении будут выглядеть просто черным пятном без каких-либо деталей. Во вторых, сканер должен сканировать темную область без шумов - этакого цветного мусора в виде разноцветных точек. Ведь чем темнее оригинал, тем слабее сигнал на фотоэлементе, и тем больший вклад в изображение будет вносить шум самого фотоэлемента и других электронных компонентов сканера.

Способность сканера отличать темные области от черных и степень зашумленности темных областей обычно связаны между собой. Они определяются качеством фотоэлемента и глубиной цвета сканера: чем более темные области распознает сканер, тем меньше шума вносит фотоэлемент.

Поэтому эти два параметра обычно объединяют одной характеристикой - динамическим диапазоном, который показывает, насколько качественный фотоэлемент установлен в сканере, и следовательно, насколько темные области он распознает и какой уровень шумов в тенях дает при сканировании. Разумеется, чем больше значение динамического диапазона, тем лучше.

Кроме того, динамический диапазон зависит от глубины цвета сканера, то есть от количества градаций серого (яркости), который он может передать. Это естественно: чем меньше градаций яркости передает сканер, тем меньше разница между самым светлым и самым темным оттенками, которые он распознает.

Связаны эти параметры очень просто. Допустим, глубина цвета сканера составляет 36 бит, или 12 бит на цвет. Это значит, что он распознает 4096 градаций серого. Десятичный логарифм от 4096 дает 3,6 - это и есть максимальный динамический диапазон данного сканера. На самом деле он меньше, поскольку чувствительность фотоэлемента не идеальна. Насколько - зависит от качества фотоэлемента. Однако можно точно сказать, что динамический диапазон данного сканера не может превышать 3,6.

По динамическому диапазону можно точно классифицировать сканеры (табл. 1).

Динамический диапазон оригинала

Очевидно, что значение динамического диапазона сканера должно превосходить значение динамического диапазона оригинала. Иначе при сканировании часть информации с оригинала будет утрачена: если изображение и не будет сплошь черным, то темные оттенки пропадут. Например, вместо тени на лице будет просто черное пятно. Либо же сканер поднимет яркость изображения и хорошо распознает темные области, зато вместо светлых областей получатся пятна, на этот раз - белые.

Данные для наиболее распространенных непрозрачных оригиналов приведены в таблице 2.

Таким образом, диапазон сканера, предназначенного для сканирования исключительно непрозрачных оригиналов, должен быть не меньше 2,3–2,5. С другой стороны, он не должен слишком уж превышать эти цифры, так как с увеличением динамического диапазона цена сканера возрастает в геометрической прогрессии.

С прозрачными оригиналами дело обстоит несколько сложнее. Во-первых, фотоматериалы бывают профессиональными и любительскими. У последних диапазон плотностей несколько меньше.

Во-вторых, в отличие от непрозрачных оригиналов, которые, как правило, печатаются на белой бумаге (то есть отсчет динамического диапазона ведется от белого цвета с низкой плотностью), в негативах самый светлый оттенок все равно имеет значительную плотность.

Это значит, что при сканировании негативов и слайдов надо учитывать не только динамический диапазон, но и максимальную оптическую плотность. Например, слайд с динамическим диапазоном 3,0 может иметь плотности от 0,7 до 3,7. А ведь динамический диапазон сканера отсчитывается практически от белого цвета - от низких плотностей. Таким образом, если диапазон сканера составляет 3,5, то максимальная плотность, которую он может распознать, - это 3,55 (максимум - 3,6). Такой сканер не сможет корректно отсканировать описанный выше слайд, хотя его динамический диапазон выше, чем у оригинала.

Поэтому для прозрачных оригиналов лучше учитывать не динамический диапазон, а максимальную оптическую плотность (таблица 3). Другими словами, максимальная оптическая плотность слайда должна быть меньше, чем максимальная плотность, которую распознает сканер.

Чем сканировать?

Что бы ни заявлял производитель, динамический диапазон планшетного сканера из класса «офисных и домашних», так называемого SOHO, стоимостью до $450, не превышает 2,6–2,7. Одна только CCD линейка, способная дать динамический диапазон 3,0, стоит дороже.

Такой сканер хорошо обрабатывает непрозрачные оригиналы, но темные области на слайдах будут выглядеть сплошным черным пятном с огромным количеством шумов. Если вы попытаетесь на таком сканере отсканировать негатив, то после инвертирования все светлые области (те, что на негативе были темными), например, небо с облаками или светлая рубашка - будут выглядеть сплошным белым пятном без каких либо деталей, кроме тех же шумов.

Поэтому, даже если к сканеру за $200 докупить слайд-модуль, качественно сканировать слайды и, тем более, негативы на нем не удастся.

Минимальный динамический диапазон, при котором можно надеяться на более или менее приличный результат, - 3,0, а лучше 3,4. Минимальная стоимость планшетного сканера с таким диапазоном - $600. Слайд-сканер с 3,0D обойдется не намного дешевле, а для профессионального использования необходимы сканеры с диапазоном от 3,4D и выше.

Что сканировать?

Мы не будем пытаться классифицировать оригиналы, а лишь разберемся, каким оригиналам следует отдавать предпочтение, а каких - избегать, и почему.

Начнем с самого простого - со сканирования текста. Высокого разрешения для этой работы не требуется, но тонкости все равно есть.

Во-первых, при выборе способа сканирования любой сканер предлагает два варианта:

  • режим black&white (halftone) - черно белый без оттенков серого;
  • режим grayscale - с оттенками серого.

В первом случае о рисунках можно забыть. Они превратятся в черные пятна, останется только текст. Причем, если текст не очень четкий, местами смазанный или просто бледный, то полученное изображение будет выглядеть плачевно.

С другой стороны, режим black&white - самый быстрый и экономный с точки зрения размера файла. Применять его нужно только для очень четкого текста.

В остальных случаях лучше предпочесть сканирование в оттенках серого. Программа распознавания текста прекрасно справится с таким файлом, да и рисунки, логотипы и т. п. отсканируются нормально.

Если оригинал цветной, необходимо учесть возможности сканера.
В принципе, самый лучший оригинал - слайд, чуть хуже - негатив, еще хуже - фотография, а полиграфических цветных отпечатков вроде вырезок из журналов вообще лучше избегать.

Почему?

Во-первых, именно в таком порядке уменьшается динамический диапазон оригиналов. Но это не самая главная причина, по которой слайд или негатив предпочтительнее фотографии.

Дело в том, что каждый оригинал характеризуется цветовым охватом - набором передаваемых оттенков. Этот параметр не следует путать с глубиной цвета. Глубина цвета показывает количество оттенков, а цветовой охват показывает, какие это оттенки.

Проиллюстрируем это на примере. Самый большой цветовой охват у человеческого глаза. Его можно изобразить в виде некой фигуры, на которой отражены все воспринимаемые оттенки (см. рисунок).

Большой треугольник очерчивает все оттенки, которые передает слайд и вообще фотопленка, треугольник поменьше соответствует цветам, передаваемым монитором (контур для сканера представляет собой нечто среднее между слайдом и монитором). Наконец, внутренняя фигура отвечает набору красок CMYK, то есть цветовому охвату типографской машины (и цветного лазерного принтера, у которого цветовой охват немногим больше).

Таким образом, зелено-голубую гамму хорошо передает фотопленка и сканер, но не принтер (известный факт: на стандартном 4 цветном принтере нельзя изобразить голубое небо).

Отсюда мораль - если есть выбор, то надо сканировать оригинал, который передает большее количество оттенков, то есть слайд, а не отпечатанную с него фотографию. Однако сканировать слайды могут далеко не все сканеры - из за слабого динамического диапазона офисных моделей. Поэтому у владельца сканера за $100–200 часто попросту нет выбора.

О полиграфических отпечатках надо сказать отдельно. Принтеры и полиграфические машины печатают специальными точками - растром, частота которого не слишком отличается от разрешения сканера 1. Хотите узнать, что получится, если наложить друг на друга две периодические структуры - сканера и отпечатка? Посмотрите на свет через два слоя капрона или любой другой полупрозрачной синтетической ткани. Вы увидите муар. Такой же муар получится в результате сканирования полиграфического отпечатка.

Бороться с этим эффектом позволяет специальная функция Descreen в драйвере сканера. Она удаляет муар, слегка размывая изображение. Но при этом существенно страдает качество. Поэтому сканировать вырезки из журнала можно только с последующим уменьшением изображения, тогда эффект размытости будет не так заметен.

Краткое резюме - если позволяет сканер, сканируйте слайды, а не фотографии. Если есть возможность - избегайте сканирования полиграфических отпечатков, а если выхода нет, то сканируйте с последующим уменьшением картинки, минимум, в 1,5 раза.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама